SYNOPSIS

Biocomposting is the purposeful biodegradation of organic matter by micro-organisms with the help of macro-organisms under controlled aerobic conditions. Although microbes as primary consumers initiate the composting, it’s the secondary and tertiary consumers including insects, worms, snails and their associates that feed upon this semi-converted organic matter, keep the compost pile cleaner, enhance the composting process and convert humus into stable and cured compost. The present work studies diversity and role of insects in household biocompost. The methods included selection of compost samples, Extraction Methods of insect fauna and Preservation and identification techniques. In this study total 12 insects were found which unfolds the diversity of insects that have created their niche in the compost and their contribution in the making and development of compost. The present work thus concludes that the household compost contains other invertebrates than earthworms—mainly arthropods— which are equally helpful for the formation of compost. Further study is needed as composting not only supports biological diversity but also mitigates the climate change.

INTRODUCTION

Composting has been defined scientifically as “the process of natural degradation of botanical and putrescible waste by the action of bacteria, fungi and other organisms in the presence of an adequate air supply” (Hester and Harrison 2002) and the product obtained is the bio-compost. Bio-compost is one of the best natural mulches and soil amendments that can be used as an alternative to commercial chemical fertilizers. It improves soil structure, soil fertility, texture, aeration, water-holding capacity and stimulates healthy root development in plants.

Composting is thus a supporting element to climate changes. The chemical fertilizers give out harmful nitrous oxide hence use of compost restricts addition of greenhouse gases in the atmosphere. Similarly when the bio-degradable waste gets composted, it diminishes the emission of hazardous methane given out by huge piles of wastes dumped on the ground.

As decomposition is the crux of the composting process, various organisms play essential role in the making and working of compost heap. Most of them are microscopic, some are large enough to be observed with the naked eye, but all are beneficial, each having a role in breaking down raw organic matter into finished compost.

The microorganisms i.e. bacteria, fungi and actinomycetes do the enzymatic actions while the larger fauna in the heap include nematodes, earthworms, woodlice, beetles, flies, ants, earwigs, springtails, millipedes, centipedes, mites, pseudoscorpions and snails, which suck, chew, bite, tear and grind the materials into smaller pieces, making them more suitable for the chemical work of the microscopic decomposers. Similarly these organisms tunnel in the compost, make the compost heap up and down,
turning it all the while, helping in aeration, needed for the composting process. This is the reason why studying these organisms in the compost is very important. In pilot work it was seen that majority of the macro-fauna is arthropods among which the insects dominate.

To study these macro organisms, one has to extract them from the compost using various physical and dynamic methods and preserve in order to identify them.

As references for extraction of only soil organisms were available and no standard methods were available to extract compost dwelling creatures, methods used by soil ecologists were modified, tested and used for the study. Among these, the insects were further isolated and studied.

The present study thus unfolds the diversity of insects which have created their niche in the compost and their contribution in the making and development of compost.

MATERIALS AND METHODS

A) Sample selection- For the present study, samples of compost from different sites was collected seasonally. The samples contained different types of feedstock (raw materials) and method of preparation for each of them was different.

B) Methods of collection of samples- While collecting, compost was handpicked in random amount from different levels and the process was repeated twice so that organic matter from all the strata was collected. Though samples were collected randomly, defined amount (100 gm) was used every time for study of fauna.

C) Methods for extraction of the fauna- The insect diversity observed among the compost samples were recorded using various extraction methods. For the extraction of the compost insect, at present no standard methods are available. Hence the methods used for extraction of soil organisms were modified and used in study. The mechanical methods including hand sorting and flotation methods were used along with direct microscopic observations for separation of insect fauna. Among flotation methods, Ladell’s modified method and Salt and Hollick’s method were used for the separation of insects.

D) Methods of preservation and identification of insects- The organism were collected using pointed and blunt forceps and were preserved in the commonly used insect preservative, which is a mixture of 70% alcohol and Glycerol [70:30]. The preserved organisms were further identified and classified using identification keys. The references and keys used for the study included- A general textbook of Entomology by A.D. Imms (Ninth edition 1957), Fauna of British India, Ceylon and Burma by Arrow G. (1910) and Guide to invertebrate animals by Webb et. al. (1978). Along with these major reference books some Internet references were also used for the identification purpose.
RESULTS AND DISCUSSION

For classification, binomial nomenclature method was followed. Class Insecta of Phylum Arthropoda was represented by twelve organisms (table 1.0).

They are identified and described as follows:

1. Earwig
 - Phylum: Arthropoda
 - Sub-phylum: Hexapoda
 - Class: Insecta
 - Sub-class: Pterygota
 - Division: Exopterygota
 - Order: Dermaptera
 - Sub-order: Forficulina

 Eat variety of animal and plant matter. Act as scavengers. Sometimes eat smaller Flies, springtails (Burton and Burton 2002). Majority of the species omnivorous but more species incline to animal food.

2. Cockroach
 - Phylum: Arthropoda
 - Sub-phylum: Hexapoda
 - Class: Insecta
 - Sub-class: Pterygota
 - Division: Exopterygota
 - Order: Dictyoptera
 - Sub-Order: Blattaria
 - Family: Blattidae

 Get attracted to damp conditions more often which is why they are found sometimes in moist compost. They are not of great use to compost but sometimes act as scavengers (Copeland 2003).
<table>
<thead>
<tr>
<th>Phylum</th>
<th>Sub phylum</th>
<th>Class</th>
<th>Sub class</th>
<th>Order</th>
<th>Sub order</th>
<th>Family</th>
<th>Organism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthropoda</td>
<td>Hexapoda</td>
<td>Insecta</td>
<td>Pterygota</td>
<td>Dermaptera</td>
<td>-</td>
<td>Earwig</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dictyoptera</td>
<td>Blattaria</td>
<td>Blattidae</td>
<td>Cockroach</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coleoptera</td>
<td>Polyphaga</td>
<td>Tenebrionidae</td>
<td>Lesser mealworm Mealworm sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nitidulidae</td>
<td>Nitidulid beetle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Staphylinae</td>
<td>Rove beetle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hymenoptera</td>
<td>Apocrita</td>
<td>Formicidae</td>
<td>Ant</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Honey bee</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Diptera</td>
<td>Brachycera</td>
<td>Stratiomyidae</td>
<td>Soldier fly</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cyclorrhapha</td>
<td>Drosophilidae Fruit fly</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cyclorrhapha</td>
<td>Calliphoridae Green bottle fly</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nematocera</td>
<td>Mycetophilidae Fungus gnat.</td>
</tr>
</tbody>
</table>

3. *Alphitobius diaperinus*.
Phylum: Arthropoda
Sub-phylum: Hexapoda
Class: Insecta
Sub-class: Pterygota
Division: Endopterygota
Order: Coleoptera
Sub-order: Polyphaga
Super-family Cucujoidea
Family: Tenebrionidae
Sub-family: Tenebrioninae
Tribe: Alphitobiini
Genus: Alphitobius
Species: diaperinus

4. *Alphitobius laevigatus*.
Phylum: Arthropoda
Sub-phylum: Hexapoda
Class: Insecta
Sub-class: Pterygota
Division: Endopterygota
Order: Coleoptera
Sub-order: Polyphaga
Super-family Cucujoidea
Family: Tenebrionidae
Sub-family: Tenebrioninae
Tribe: Alphitobiini
Genus: Alphitobius
Species: laevigatus
Commonly known as ‘lesser mealworm’

Was the most dominant beetle among all the insects in all samples. Both the larval and adult stages are helpful as cut down the larger plant particles into smaller and provides extra space for microbes.

The feeding habits and habitat is similar with the sp diapterinus. The larvae and beetles feed upon fresh and decaying vegetation.

(http://en.wikipedia.org/wiki/Tenebrionid)

5. Nitidulid beetle

Phylum: Arthropoda
Sub-phylum: Hexapoda
Class: Insecta
Sub-class: Pterygota
Division: Endopterygota
Order: Coleoptera
Sub-order: Polyphaga
Super-family: Cucujoidea
Family: Nitidulidae

Commonly known as sap beetles. Are small (2–6 mm) ovoid. Feed upon plant sap, overripe fruits. Help in cleaning compost pile.

Prey on snails, insects and other small animals.

Found in decaying matter including dung and Carcass as are predacious (Imms 1957). Are Swift cursorials.

(http://en.wikipedia.org/wiki/Nitidulidae)

(Image 5)

6. Rove beetle

Phylum: Arthropoda
Sub-phylum: Hexapoda
Class: Insecta
Sub-class: Pterygota
Division: Endopterygota
Order: Coleoptera
Sub-order: Polyphaga
Super-Family: Staphylinidea
Family: Staphylinidae.

7. Ants

Phylum: Arthropoda
Sub-phylum: Hexapoda
Class: Insecta
Sub-class: Pterygota
Division: Exopterygota
Order: Hymenoptera
Sub-order: Apocrita
Super-family: Vespoidea
Family: Formicidae

Feed upon varied materials like fungi, seeds

8. Honey bee

Phylum: Arthropoda
Sub-phylum: Hexapoda
Class: Insecta
Sub-class: Pterygota
Division: Exopterygota
Order: Hymenoptera
Sub-order: Apocrita
Infra-order: Aculeata

Was a surprise visitor to the compost.
sweets, scraps, other insects and sometimes probably was feeding on the juices of the other ants (Martin et al. 1992). Usually seen decaying fruits and vegetables. Did not when the pile is cooler and drier. During study appear accidentally but was hovering large ants, about 6-7 mm in length were found. and settling on compost heap.

(1 Image 7) (1 Image 8)

9. Soldier fly

10. Fruit fly

Phylum: Arthropoda
Sub-phylum: Hexapoda
Class: Insecta
Sub-class: Pterygota
Division: Endopterygota
Order: Diptera
Sub-order: Brachycera
Family: Stratiomyidae

Phylum: Arthropoda
Sub-phylum: Hexapoda
Class: Insecta
Sub-class: Pterygota
Division: Endopterygota
Order: Diptera
Sub-order: Cyclorrhapha
Family: Drosophilidae

These are rather large, more flattened and Flies are identified with prominent red eyes.
with white, yellow or green markings. Mostly Found on flowing sap, decaying fruit or fleshy occur in umbelliferous and damp situations. parts of vegetables. Get attracted to fermenting The larvae are saprophagous scavengers. The decomposing matter. Were observed feeding on larvae were voraciously eating the debris, while herbage and wandering among freshly added the adult fly was feeding upon vegetable trash.

(1 Image 9) (1 Image 10)

12. Fungus gnat

Phylum: Arthropoda
Sub-phylum: Hexapoda
Class: Insecta
Sub-class: Pterygota
Division: Endopterygota
Order: Diptera
Sub-order: Brachycera
Family: Calliphoridae

Phylum: Arthropoda
Sub-phylum: Hexapoda
Class: Insecta
Sub-class: Pterygota
Division: Endopterygota
Order: Diptera
Sub-order: Cyclorrhapha
Family: Mycetophilidae

Very often, metallic green coloured adult Very tiny fly. Smaller in size than fruit fly.
flies. Larvae saprophagous or flesh feeders Feeds mainly on fungal pores in compost hence occur in carrion. Fly lay eggs in trash and decomposing fruits and vegetables.
containing remnants of flesh and larvae grown Larvae sometimes parasitic if fly lays eggs inside
in it. During study the green bottle fly was confined to the compost containing non-vegetable matter in feedstock. Hence microbes attached to its body get transferred in compost.

(Image 11) (Image 12)

CONCLUSION

In the urbanization era, household garbage disposal is becoming a great problem due to unavailability of space, transportation and many other factors. Composting of this household garbage is essential at the level of housing societies as this will reduce the dumping problem, lessen health hazards and curb methane emission, which in turn supports the environment and fights the climate change.

The insects found in compost should be used for the composting process which will also save biodiversity. But further study related to them need to be done. The present study thus leads to the following conclusions-

Ø The compost formation initiates with the microorganisms but gets completed with the help of macro-organisms.
Ø The household compost contains other invertebrates than earthworms- majorly arthropods- which are equally helpful for the formation of compost.
Ø The study of diversity of arthropods revealed presence of 12 insects in the compost which help in formation and curing of the compost.
Ø Some insects complete their entire life cycle in compost and thus help composting in their larval as well as adult stage.
Ø Thus it can be suggested that, household bio-compost is a niche for insect diversity and it can be maintained without use of earthworms in the compost

BIBLIOGRAPHY

Arrow, G. (1910). Fauna of British India including Ceylon and Burma, Lamellicornia I. Cetoniinae and Dynastinae, (xiv + 322 p – 76)

PHOTOPLATE

Image 1 Earwig Image 2 Cockroach Image 3 Alphitobius diaperinus Image 4 Alphitobius laevigatus

Image 5 Nitidulidid beetle Image 6 Rove beetle Image 7 Ant Image 8 Honeybee

Image 9 Soldier fly Image 10 Fruit fly Image 11 Green bottle fly Image 12 Fungus gnat