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ABSTRACT

Many regional environmental problems are the consequence of anthropogenic activities involving land cover
changes. Temporal land cover data with social aspects are critical in tracing relationships of cause and effect
on variables of interest with the effects of context on behaviour, or with the process of human environmental
interaction and are also useful for the governance of urbanising cities. Many cities are now rapidly becoming
urbanised and undergoing redevelopment for economic purposes with new roads, infrastructure improve-
ments, etc. raising the necessity to understand the dynamics of the urban growth process for the planning of
natural resources. Cellular automata (CA), an artificial intelligence technique based on pixels, states, neigh-
bourhoods and transition rules is useful in modelling the urban growth process due to its ability to fit such
complex spatial nature, using simple and effective rules. This study develops the calibration of a CA model
by taking into account spatial and temporal dynamics of urban growth. The effectiveness of this technique is
demonstrated by capturing the growth pattern of Bangalore, a city in India, with historical remote sensing and
population data.

Key words: artificial intelligence, cellular automata, governance, land use model, urban growth.

Calibrado de un modelo de automatas celulares para modelar
el crecimiento urbano

RESUMEN

Muchos problemas medioambientales a nivel regional son la consecuencia de actividades antrdpicas que in-
volucran cambios en el uso del suelo. Los datos temporales de usos del suelo con aspectos sociales son criti-
cos en el seguimiento de las relaciones causa y efecto sobre variables de interés con los efectos del contexto
sobre el comportamiento, o con los procesos de interaccion humana con el medioambiente y son también
de utilidad para la gestion de la urbanizacion de las ciudades. Muchas ciudades estan sufriendo, en la actu-
alidad, una rapida urbanizacion y remodelacion con propdsitos econdmicos con nuevas carreteras, mejora
de infraestructuras, etc. surgiendo la necesidad de entender la dinamica del proceso de crecimiento urbano
para la planificacion de los recursos naturales. Los automatas celulares (AC), una técnica de inteligencia ar
tificial basada en el uso de pixeles, estados, vecindades y reglas de transicion son utiles en el modelado de
los procesos de crecimiento urbano debido a su habilidad para ajustar dichos modelos espaciales complejos
utilizando reglas sencillas y efectivas. Este trabajo desarrolla el calibrado de un modelo de AC teniendo en
cuenta la dinamica espacial y temporal del crecimiento urbano. La efectividad de esta técnica se demuestra
por la captura de los patrones de crecimiento de la ciudad de Bangalore, una ciudad de la India, utilizando
datos historicos de teledeteccion y de poblacion.

Palabras clave: automatas celulares, crecimiento urbano, gestion, inteligencia artificial, modelo de uso del
suelo.
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VERSION ABREVIADA EN CASTELLANO

Introduccion y metodologia

La urbanizacion es una forma de crecimiento metropolitano con nuevas carreteras, aeropuertos, pasos ele-
vados, centros comerciales y cualquier otra infraestructura propia del desarrollo y de la actividad econdmica,
que afecta a la geografia fisica de un area. Este fendomeno esta exacerbado en la India con una poblacion
urbana creciendo a un ratio de aproximadamente un 2.3% al ano (Ramachandra and Kumar, 2008; World Urba-
nization Prospects, 2005). Este dramatico incremento en urbanizacion ha potenciado la necesidad de entender
la dinamica del proceso de crecimiento urbano a través de “modelos de crecimiento” para la distribucion sos-
tenible de recursos, la planificacion y la gestion. Entre estos modelos de crecimiento, los automatas celulares
(AC) esta siendo ampliamente utilizados en la simulacion de procesos de crecimiento urbano, pero existen
todavia aspectos no resueltos como el calibrado del modelo para una prediccion fiable (Al Kheder et al., 2006,
2007; Li et al., 2001). Como los modelos de AC son sensitivos a las reglas de transicion y a los valores de los
parametros, el calibrado del modelo tiene por objetivo el encontrar los mejores valores de las reglas de tran-
sicion para reproducir el mismo patron urbano que el que se obtiene a partir de datos historicos. Los objetivos
de este estudio son:

e Desarrollar e implementar un modelo de crecimiento urbano efectivo y basado en AC para simular el
crecimiento como una funcion de la estructura de vecindad local.

e Desarrollar un algoritmo de calibrado que tiene en consideracion las dinamicas espacial y temporal del
crecimiento urbano.

Espacialmente y temporalmente, el modelo es calibrado localmente y chequeado en la ciudad de Bangalo-
re (estado de Karnataka en India) la cual se ha dividido en 8 direcciones o zonas diferentes Norte (N), noreste
(NE), este (E), sureste (SE), sur (S), suroeste (SW), oeste (W) y noroeste (NW)) con su origen en el “centro de
la ciudad” tal y como se muestra en la figura 1. Para tener un modelado de crecimiento urbano preciso, el mo-
delo considera el efecto de los rasgos especificos del sitio y también se adapta a los cambios en los patrones
de crecimiento durante el tiempo. La entrada al modelo de crecimiento urbano consiste en dos tipos de datos:

(i) Informacion del uso del suelo, obtenido de imagenes Landsat MSS de 1973, Landsat TM de 1992 y IRS
LISS-IIl MS de 2006, en seis clases de interés tales como dreas residenciales, areas comerciales, carrete-
ras, vegetacion, agua y campo abierto, a través de un clasificador supervisado basado en un algoritmo
de maxima verosimilitud gausiana. Las areas residenciales y comerciales junto a las carreteras se agru-
paron en una clase unica llamada “urbano; de modo que la informacion clasificada final tiene cuatros
clases de uso del suelo: urbano, vegetacion, agua y campo abierto. Las clasificaciones de las imagenes
de 1973, 1992 y 2006 tuvieron precisiones del 72%, 75% y 73% respectivamente y se muestran en la figu-
ra 2. Las estadisticas de las clases se ofrecen en la tabla 1.

(ii)El segundo tipo de dato de entrada ha consistido en mapas de densidad de poblacion por distritos (uni-
dad administrativa local basica) representada en pixeles en formato raster para los anos 1973, 1992 y
2006 que corresponden a los anos de los datos de las imagenes de satélite. La figura 3 muestra el mapa
de distritos (izquierda) en cada direccion y la densidad de poblacion para cada distrito (derecha). Estos
datos fueron extrapolados del mapa de densidad del Censo de Poblacion de la India (poblacion por dis-
trito dividido por el area del distrito) de 1971, 1991 y 2001 utilizando curvas de ajuste cuando la densidad
de poblacion se representaba como una funcion de la distancia desde el centro de la ciudad, tal como se
muestra en la figura 4.

El algoritmo de AC consiste en la definicion de reglas de transicion que controlan el crecimiento urbano,
el calibrado de dichas reglas y la evaluacion de los resultados para propdsitos de prediccion. Las reglas de
transicion deciden el estado del pixel en el mapa de uso del suelo de una época temporal a la siguiente, que
en este caso van de 1973 a 1992 y de 1992 a 2006. El estado futuro de un pixel para el tiempo (t+1) desde el
tiempo presente (t) depende de tres factores: (i) el estado actual del pixel, (ii) estado actual de los pixeles
vecinos, y (iii) reglas de transicion que rigen el crecimiento urbano a lo largo del tiempo. Esto sepuede repre-
sentarse por:

S (a) = f(S'(),S' (7). transition _rules) (1)
donde
S™(a) = Estado futuro del pixel a. en el tiempo t+1
S'(a) = Estado actual del pixel o. en el tiempo t

S'(r) = Estado del pixel t, que es un pixel vecino del pixel a.
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Las reglas de transicion (¢) se disenaron para identificar el nivel urbano requerido a la vecindad para que
se urbanice un pixel de test. Las siguientes reglas fueron adoptadas de Al Kheder et al., (2007): si el pixel que
esta siendo transformado es agua, carretera, residencial o comercial, entonces no realizar ningin cambio;
por otra parte, si el pixel pertenece a vegetacion o campo abierto, entonces su estado se modifica a urbano
siempre que la densidad de poblacion sea mayor o igual al umbral (P) y el numero de pixeles urbanos vecinos
sea mayor o igual al umbral (R). R es un entero que va de 0 a 8 (vecindad 3x3) y P es un numero real que va
de 0 a 1 (con un incremento de 0.1; los valores de densidad de poblacion se normalizaron entre 0 y 1 para
cada direccion con el objeto de tener reglas de calibrado de AC efectivas). La imagen Landsat MSS clasificada
mas antigua (de 1973) de la ciudad de Bangalore (figura 5) obtenida a partir de la imagen del Gran Bangalore
(figura 2) se utilizé como entrada al modelo de AC sobre el cual se aplicaron las reglas de transicion para
modelar el crecimiento urbano comenzando en esa época. Las reglas de transicion de AC (¢) del modelo im-
plementado fueron construidas fisicamente sobre las lmagenes de entrada utilizando una vecindad 3x3- A
en la ecuacion (2) identifica el estado futuro del pixel de test, a *I' en la ecuacion (3).

Q] Q] )

ai—l,j—l ai—l,j ai—l,j+1
t (t) () (@]
Ai,j - ai,j—l ai,j ai,]+1
@) ] )]
a’ ;. a . R
i+l,j-1 i+h,) i+l )+ 3x3neighbour (2)
t+l — ¢(A ) (3)

El calibrado (esto es, la identificacion de los mejores valores para los parémetros R y P) de tales reglas se
realizd espacialmente a nivel de distrito Tw (donde w representa distritos individuales) para ajustar los rasgos
de la dinamica urbana local y a lo largo del tiempo para considerar los cambios urbanos temporales en cada
direccion, T,(donde t representa tiempo en afios) en la ecuacion (4).

¢calibrated f( w? t7¢) (4)

¢ en la formula de calibracion representa el criterio seleccionado para encontrar el mejor conjunto de re-
glas para cierta localizacion espacial de distrito T,y para una época temporal determinadaT, Este criterio en
el modelo representa el error total de modelado, esto es, el desajuste entre la salida del modelo y la realidad
y que debe ser minimizado. ¢ en la ecuacion (5) se definié como una funcion del ajuste F en la ecuacion (6) y
de los errores totales AE en la ecuacion (7). Ajuste y errores totales miden la compatibilidad en términos de
cantidad de urbano y patrones de urbano dentro de cada distrito con respecto a la realidad, respectivamente
(Al Kheder et al., 2007).

¢ = Abs(F —100%) + AE (5)

Modeled urban _count

= x100% (6)
Ground _truth _urban _couni

AF — Total _error _count «100% 7)
Total _count

Una vez que se identificaron las reglas de transicion del AC y se inicializaron para cada direccion, el modelo
se ejecuto desde 1973 hasta 1992.

Resultados y discusion

Los resultados de la simulacion y subsecuente prediccion de modelado urbano, tal y como se muestra en la
tabla 2 (ver Fitness %, Total Error (AE %) y valores ¢) y la figura 6 (version ampliada) no muestran un ajuste
cercano a la realidad de 1973 a 1992 en términos de cantidad de urbano, sin embargo el patron de crecimiento
urbano si se ha ajustado para diferentes direcciones hasta un cierto punto. La razon para este desajuste del
numero de pixeles de tipo urbano es que el crecimiento de 1973 a 1992 tuvo lugar de forma desordenada
(aleatoria) y no se contabilizé en los datos del censo de poblacion. Por consiguiente, no quedo capturado por
el cambio en la densidad de poblacion de varios distritos en diferentes direcciones. En contraste, las image-
nes simuladas de 2006 (ampliada en la figura 7) estan mas cercanas a la imagen clasificada real en términos
de patron espacial de crecimiento urbano. Las reglas de transicion para una direccion se calibraron repeti-
damente hasta conseguir satisfacer un criterio de convergencia. El valor medio de ajuste para la imagen de
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1992 fue de aproximadamente un 60% y el error total fue de 29.09 con un ajuste aproximado del 71%. Es de
destacar que para una prediccion altamente precisa, el conteo urbano total modelado y el verdadero deberian
coincidir y entonces la funcion de ajuste (F) sera 1 (en tanto por uno) o 100 (en %). El error total AE es el error
de omision mas el de comision. A un valor mayor AE le corresponde un mayor porcentaje del error del conteo.
Los resultados de simulacion y prediccion de modelado urbano, tal y como se muestra en la tabla 2 para el
ano 2006, muestran que los resultados de ajuste para la prediccion era cercana, en términos de conteo de ur-
bano, (valores cercano al 100%) entre los datos reales y modelados con ajuste medio de 101.60 (lo que supone
una ligera sobreestimacion) y el error total medio obtenido fue de 31.68%. Esto indica un nivel aproximado de
ajuste del 69% en una comparacion de pixel a pixel entre modelado y realidad. Por consiguiente, a valores
mads altos de ¢ en la ecuacion (5), mayor es el error de modelado. Para la imagen simulada de 2006, el valor
medio de ¢ es de 33.33, mostrando un resultado mas realista comparandolo con el patron de crecimiento
urbano actual. Esto indica la habilidad del modelado y calibrado en el dominio espacial y temporal basado
en AC y asimismo prueba su efectividad en la comprension, en gran medida, de las interacciones del hombre

con el medio ambiente.

Introduction

Urbanisation is a form of metropolitan growth that is
a response to various economic, social, and political
forces and to the physical geography of an area. This
has resulted in the recent dramatic increase in urban
population that is exerting an enormous pressure on
the infrastructure services. Many cities are now un-
dergoing a tremendous growth in economic activity
with new roads, airports, flyovers, shopping malls,
and other such infrastructure developments.This phe-
nomena is very pronounced in India with the urban
population growing at a rate of around 2.3 percent per
annum (Ramachandra and Kumar, 2008; World Urba-
nization Prospects, 2005). An increased urban growth
is irreversible due to population explosion and mi-
gration. This dramatic increase in urbanisation has
raised the need to understand the dynamics of urban
growth processes for planning and governance. The
impact of piecemeal planning in large cities is often a
major concern for stakeholders, such as those invol-
ved in researching, modelling, forecasting and policy
making related to planning sustainable urban deve-
lopment (Barredo et al., 2004). It also raises the ne-
cessity to understand the dynamics of urban growth
processes through “growth models” for sustainable
distribution of usable resources. Urban growth mo-
dels with better understanding, prediction and visua-
lisation capabilities have gained relevance in regio-
nal planning with increasing urbanisation in recent
times as an emerging research domain. Amongst
these growth models, cellular automata (CA), an ar-
tificial intelligence (Al) technique, transportation and
land use planning models based on gravity theory
or optimisation, spatial models (Berling-Wolff and
Wu, 2004), etc. are being widely used in simulating
urban growth processes apart from the conventional
mathematical models (Batty and Xie, 1994; Lau and

Kam, 2005). CLUE-S (the conversion of land use and
its effects at small regional extent) simulates land use
changes based on the empirical analyses of location
suitability combined with the dynamic simulation of
competition and interactions between the spatial and
temporal dynamics of land use systems (Verburg et
al., 1999, 2002, 2004, 2010; Veldkamp, 1996). This mul-
ti-scale land use change model can predict the impact
of biophysical and socio-economic forces that drive
land use changes with complex spatial patterns (Ver-
burg and Overmars, 2007; Chen et al., 2010; Xu et al.,
2013). Even though the application of CA in urbani-
sation process modelling has been by and large suc-
cessful (AlKheder et al., 2006; Batty et al., 1999; Cheng
and Masser, 2004; Li et al., 2001; Li et al., 2008), there
are still unresolved issues such as model calibration
for reliable prediction (AlKheder et al., 2006, 2007; Li
et al., 2001). Since CA models are sensitive to tran-
sition rules and their parameter values, calibration
aims to find the best transition rule values to repro-
duce the same urban pattern with reference to histo-
rical data. In the literature, SLEUTH model calibration
(Hagerstrand, 1967; Tobler, 1979; von Neumann, 1966;
Wolfram, 1994), multi-criteria evaluation (Wu and We-
bster, 1998), neural networks (Li andYeh, 2002), gene-
tic algorithms (Alkheder et al., 2006), etc. have been
used for calibration. These models involve large input
variables with a set of rules which are cumbersome
to calibrate. Calibration of CA models requires inten-
sive computation to select the best parameter values
for accurate modelling. This study develops the cali-
bration of a CA model by taking spatial and temporal
dynamics of urban growth into account and the tech-
nique is demonstrated by capturing the growth pat-
tern of Bangalore, a city in India with historical remote
sensing (RS) and population data.

The paper is organised as follows: The section be-
low briefly reviews the literature (focusing on the
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evolution, development and calibration of CA) and
states the objectives of this study, followed by data
preparation (classification of RS data and generation
of population density maps).This followed by an in-
troduction to CA with the simulated results and dis-
cussion, whilst the concluding remarks are presented
in the last section.

A review of the literature and objectives

Al techniques can be used to tackle complex and dy-
namic problems in urban studies. Wu and Silva (2010)
reviewed several Al techniques that can be utilised to
better understand urban and land dynamics proces-
ses as well as the associated emerging challenges. In
this review we focus solely on the evolution, develop-
ment and calibration of CA rules.

CA was developed in the late 1940s by S. Ulan and
J. Von Neumann based on the Turing machine, pla-
ced at each cell of a lattice and connected together
(Sante et al., 2010). CA models for urban growth si-
mulation have proliferated because of their simplici-
ty, flexibility, intuitiveness, and particularly because
of their ability to incorporate the spatial and tempo-
ral dimensions of the process (Sante et al., 2010).The
ability of CA to simulate urban growth is based on
the assumption that past urban development affects
future patterns through local interactions among
land uses. CA-based models have abilities to fit com-
plex spatial nature using simple and effective rules
for urban simulation and are also integrated with
Geographical Information Systems (ltami, 1994;
Wagner, 1997) with better computational efficiency
at higher spatial resolutions. Most CA models captu-
ring the urban growth process are based on states,
neighbourhoods and simple and effective transition
rules that are capable of modelling the evolution of
complex spatial patterns. The development of a CA
model involves rule definition and calibration to pro-
duce results that are consistent with historical data.
The same rules are also used for future prediction
(Clarke et al., 1997; White and Engelen, 1993). Sante
et al. (2010) provide a detailed structured overview of
CA models for urban growth, with new advances and
the strengths and weaknesses of the different mo-
dels. Wolfram (1984) demonstrated how complex na-
tural phenomena can be modelled using CA, which
laid the foundations for a theory of CA (Wolfram,
2002) on the premise that these are discrete dynamic
systems wherein local interactions amongst the
components generate global changes in space and
time (Clarke and Gaydos, 1998). Tobler (1979) first
proposed the application of cellular space models

for geographic modeling. The first theoretical ap-
proach to CA-based models for the simulation of ur-
ban expansion appeared in the 1980s followed by
other such studies (Batty and Xie, 1994; Couclelis,
1985; White and Engelen, 1994). Itami (1994) reviewed
CA theory and its application to the simulation of
spatial dynamics, and Batty (2005) provided an
analysis of diverse applications for modelling urban
growth using CA.

In other similar studies, Liu et al., (2008) andYang et
al., (2008) adopted kernel-based techniques and sup-
port vector machines (SVM) for transition rules. One
of the earliest, widely used and most well-known mo-
del is CA-SLEUTH (slope, land use, exclusion, urban
extent, transportation and hillshade) model (Wolfram,
1994), based on four major types of data: land cover,
slope, transportation, and protected lands (Clarke et al.,
1997). A set of initial conditions in SLEUTH is defined
by ‘seed’ cells which are determined by locating and
dating the extent of various settlements identified from
historical maps, atlases, and other sources.These seed
cells represent the initial distribution of urban areas.
However, the disadvantage is that sets of complex be-
haviour rules are developed, which involve many steps
such as randomly selecting a seed location, investiga-
ting the spatial properties of the neighbouring cells,
and urbanising the cell based on a set of probabilities.
Silva and Clarke, (2002) used SLEUTH developed with
predefined growth rules, applied spatially to gridded
maps of the in a set of nested loops. Here, urban ex-
pansion was modelled in a modified two-dimensional
regular grid and the problem of equifinality and para-
meter sensitivity to local conditions was addressed.
This model is difficult to calibrate to the actual ground
conditions and requires many parameters to be accou-
nted in the development of the rules. Most of these
CA models are usually designed based on individual
preference and application requirements, where tran-
sition rules are defined in an ad hoc manner (Li and
Yeh, 2003; Pinto and Antunes, 2007). In fact, the transi-
tion rules of a formal CA consider only the current state
of the cell and its neighbours. However, a variety of
factors influence urbanisation processes, such as suita-
bility of land use, accessibility, socio-economic condi-
tions, urban planning, etc. The transition rules of strict
CA are static, although the processes that govern land
use change may vary over time and space. This neces-
sitates developing transition rules adapting to specific
characteristics of each area and time interval, where the
spatial and temporal variations can be achieved through
calibration (Geertman et al., 2007; Li et al., 2008).

The discussion so far has been based on studies
pertaining to the design and development of increa-
singly complex models and simulations of urban
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dynamics that have in general ignored the process of
calibration involving heuristic approaches. Most of
the developed CA models need intensive computa-
tion to select the best parameter values for accurate
modelling. Furthermore, calibration has largely been
used for estimation and adjustment of model para-
meters and constants to bring the model output as
close to the reality as possible. Therefore, the selec-
tion of CA transition rules remains an active research
topic. This motivates development and implementa-
tion of an effective CA-based urban growth model
that is easy to calibrate and which simultaneously
takes the spatial and temporal dynamics of urban
growth into account. The objectives of this study are
as follows:

1. To develop and implement an effective CA-based
urban growth model to simulate growth as a
function of the local neighbourhood structure of
the input data.

2. To develop a calibration algorithm that takes spa-
tial and temporal dynamics of urban growth into
consideration.

Spatially, the model is locally calibrated to take
into account the effect of site-specific features whilst
the temporal calibration is set up to adapt the model
to the changes in the growth pattern over time. Ca-
libration provides optimal values for transition rules
to achieve accurate urban growth modelling. The in-
put to the urban growth model consists of two types
of data: (i) classified images of 1973, 1992 and 2006,
where each pixel represents one of the four land use
classes — urban, vegetation, water and others, (ii) po-
pulation density maps represented by pixels in a ras-
ter format for the years 1973 and 1992.

CA generates transition rules for each pixel.This de-
pends on the current state of the pixel’s category (in
terms of the class of land usage) and its population
density value. The job of the transition rule is to deci-
de the state of the pixel (in terms of land usage) from
one time epoch to the next, which in this case hap-
pens to be from 1973 to 1992 and from 1992 to 2006.

Area of study, data and methods

This section describes the study area and input data
processing scheme. The study area considered is
Bangalore city, which is the principal administrative,
cultural, commercial, industrial, and knowledge ca-
pital of the Karnataka state in India. The administra-
tive jurisdiction was widened in 2006 by merging the
existing area of the spatial limits of the city with eight
neighbouring urban local bodies and 111 villages of
Bangalore Urban District to form Greater Bangalore.

Bangalore has spatially grown more than ten times
from 69 to 741 square kilometres from the year 1949
to the year 2006. Now, Bangalore is the third largest
metropolis in India, currently with a population of
about 9.6 million (Census of India, 2011; Ramachan-
dra et al., 2008). Bangalore is composed of 100 wards
or neighbourhoods. Since, urbanisation and urban
sprawl are more of a local phenomenon and site spe-
cific, local urban sprawl tends to increase in a certain
direction along ring roads, highways, or around servi-
ce facilities in another direction, which later becomes
the urban centre hub. The greater the distance from
the city centre, the lesser is the development (Cheng
and Masser, 2004; Li and Yeh, 2002; Yeh and Li, 2001).
Therefore, a better way to understand the spatio-
temporal pattern of a city is to study the urban lands-
cape in different directions from the central business
district. For this reason, in the current study, the city
was divided into 8 zones [north (N), northeast (NE),
east (E), southeast (SE), south (S), southwest (SW),
west (W), and northwest (NW)] with their origin from
the ‘city centre’ as shown in Figure 1. Visualisation
of the sprawl process is crucial in urban planning for
providing basic amenities in different geographical
locations.

The two types of input data were:

(i) classified RS data of 1973, 1992 and 2006.

(ii) population density maps of 1973 and 1992.

The Landsat multispectral scanner (MSS) of 1973
(in blue (B), green (G), red (R) and near infrared (IR)
bands of 79 m spatial resolution), Landsat thematic
mapper (TM) of 1992 (B, G, R, near IR, mid IR-1 and
mid IR-2 bands of 30 m spatial resolution), and IRS
linear imaging self scanner (LISS) -lll for 2006 (in G,
R and NIR bands of 23.5 m spatial resolution) were
used for the generation of land use maps. The data
are stored in 8-bit format, i.e. each pixel can take
any value from 0 to 255 (28= 256 values) which re-
presents the reflectance by that pixel corresponding
to the same geographical location on the ground.
The 1973 image was of the dimension 429 rows x
445 columns, whereas the 1992 image was of 1130
rows x 1170 columns and the 2006 image was of
1445 rows x 1496 columns. The differences in the
size of the images are due to variations in the spa-
tial resolution of the pixels (79 m, 30 m, and 23.5 m
respectively). These data were rectified and registe-
red for systematic errors with known ground con-
trol points that were identifiable both in the image
as well as in the Survey of India (SOI) Topographical
sheets of 1:50000 scale and projected to a polyconic
system with a geographic latitude-longitude coordi-
nate system and Evrst56 as the datum. All data were
resampled to have 23.5 m spatial resolution, having
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Figure 1. Sgudy area: Bangalore city, Greater Bangalore, India.
Figura 1. Area de estudio: ciudad de Bangalore, Gran Bangalore,
India.

1445 rows x 1496 columns to fit each other spatially.
Six classes of interest were identified from the false
colour composite images: residential areas, com-
mercial areas, roads, vegetation, water and open
land.

Supervised classification of the image was perfor-
med using a Maximum Likelihood classifier (MLC).
MLC has become popular and widespread in RS be-
cause of its robustness (Conese and Maselli, 1992;
Ediriwickrema and Khorram, 1997; Strahler, 1980;
Zheng et al., 2005). MLC assumes that each class in
each band can be described by a normal distribution
(Bayarsaikhan et al., 2009). For each land use class
(residential areas, commercial areas, roads, vegeta-
tion, water, and open land), training samples / po-
lygons were collected using a hand held GPS from
across the city, representing approximately 10% of
the study area. With these 10% known pixel labels
from training data, the aim was to assign labels to all
the remaining pixels in the image (RS data of Banga-
lore city). The objective was to classify a pixel with
M x 1 grey scale values, corresponding to M spectral
bands, into one of the N spatial classes.

At the outset, let the spectral classes in the data
be represented by o, n=1,..., N, where N is the to-

tal number of classes, and (X|@,): N(x,,2,). Let

Xs-e5 Xy, denote the (m x 1) grey-scale values
across the M spectral bands of m_ sampled pixels
(observations or training samples which are indepen-
dently and identically distributed (i.i.d.) random varia-
bles), belonging to the n'" spatial class, then
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Baye's decision theory forms the basis of statisti-
cal pattern recognition based on the assumption that
the decision problem can be specified in probabilistic
terms (Wolfel and Ekenel, 2005). The MLC assuming
the distribution of data points to be Gaussian, quan-
titatively evaluates both the variance and covariance
of the category’s spectral response pattern (Lillesand
and Kiefer, 2002), which is described by the mean vec-
tor and the covariance matrix. The statistical probabi-
lity of a given pixel value being a member of a particu-
lar class is computed and the pixel is assigned to the
most likely class (highest probability value).

plw |x) gives the probability that the pixel with ob-
served column vector of DNs (digital numbers) x, be-
longs to class o,. It describes the pixel as a point in
multispectral (MS) space (M-dimensional space, whe-
re M is the number of spectral bands). The maximum
likelihood (ML) parameters are estimated from repre-
sentative i.i.d. samples. Classification is performed
according to

xea, if p(o, |x)>p(®,|x) Vj#n (1)

i.e., the pixel vector x belongs to class o, if p(o |x) is
largest.The ML decision rule is based on a normalised
estimate of the probability density function (p.d.f.) of
each class. MLC uses Baye’s decision theory where
the discriminant function, g, (x) for o  is expressed as

2, (0) = p(x|w, )p(w, ) (2)

Where, plo,) is the prior probability of o , p(x|w,)
is the p.d.f. (assumed to have a Gaussian distribution
for each class o, ) for pixel vector x conditioned on o,
(Zheng et al., 2005). Pixel vector x is assigned to the
class for which gln(x) is greatest. In an operational con-
text, the logarithm form of (2) is used, and after the
constants are eliminated, the discriminant function
for o, is stated as

g () =(x—2,) X (x=p,)+In| 2 |2In p(w,)
(3)

where 2., is the variance-covariance matrix of o , 11,
is the mean vector of . Equation (3) is a special case
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of the general linear discriminant function in multiva-
riate statistics (Johnson and Wichern, 2005) and used
in this current form in the RS digital image proces-
sing community. A pixel is assigned to the class with
the lowest g, (x) in equation (3) (Duda et al., 2000; Ri-
chards and Jia, 2006; Zheng et al., 2005).

Residential and commercial areas and roads were
grouped into a single class called ‘urban’. Final clas-
sified images thus had four land use classes — ur-
ban, vegetation, water and open land (others). The
classified images of 1973, 1992 and 2006 had overall
accuracies of 72%, 75%, and 73% respectively. Clas-
sification was done using the open source programs
(i.gensig, i.class and i.maxlik) of Geographic Resou-
rces Analysis Support System (http://wgbis.ces.iisc.
ernet.in/grass) and is displayed in Figure 2. The clas-
sified images were also verified with field visits and
Google Earth images. The class statistics is given in
Table 1.

Population density is a second input that is re-
quired for CA modelling. A population map of Ban-
galore was prepared from the Census of India data
of 10-year intervals (1971, 1981, 1991, 2001).The In-
dian Census by the Directorate of the census ope-
ration, the Government of India (http://censusindia.
gov.in) is the most credible source of information
on demography (population characteristics), eco-
nomic activity, literacy and education, housing
and household amenities, urbanisation and many
other socio-cultural and demographic data sin-
ce 1872. Population densities for all 100 wards or

13008 2t
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I egetation
- Water bodies

| | Cpen land

Figure 2. Greater Bangalore in 1973, 1992 and 2006.
Figura 2. Gran Bangalore en 1973, 1992 y 2006.

neighbourhoods were computed by dividing their
populations by their respective ward areas. Figure
3 shows the ward map (left) in each direction and
the population density for each neighbourhood (a
basic administrative unit) (right) in 1971, 1991 and
2001.

Population densities for 1973, 1992 and 2006 were
extrapolated from the population densities of 1971,
1991 and 2001 to correspond with RS data. First, the
centroid for each neighbourhood was calculated.
Then, the Euclidean distance from each ward centroid
to the city centre (see Figure 1) was computed. This
process was repeated for all the wards to prepare a
table of population densities versus distance. Popula-
tion densities for neighbourhoods within a specified
distance from the city centre were averaged to reduce
the variability in data. For example, an average popu-
lation density for all wards within 0-1 km was calcu-
lated then another average density was calculated for
wards within 1-2, 2-3, 3-4 km and so on. Curves were
fitted representing population density as a function of
distance from the city centre as shown in Figure 4.The
unknown model parameters in the curve fitted equa-
tions were calculated for the years 1991 and 2001.The-
se models were used to calculate the population den-
sity for each pixel in the imagery based on its distance
from the city centre for the years 1991 and 2001. The
changes in model parameters over the 10 years (from
1991 to 2001) were used to calculate the yearly rate
of change.The updated parameters that changed year
by year were used to calculate the population density
grids for the years 1973 and 1992 matching the same
size of the input imagery (classified maps - 1445 rows
and 1496 columns).These grids were used as input to
the CA model.

Cellular automata (CA) growth modelling

This section discusses the design of CA urban growth
modelling in detail. The CA algorithm consists of de-
fining the transition rules that control urban growth,
calibrating these rules, and then evaluating the results
for prediction purpose.

Transition rules

Transition rules translate the effect of input data in si-
mulating the urbanisation process. The CA algorithm
design starts by defining the transition rules that drive
urban growth over time. They depend on the current
status of land usage and population density and are
subject to certain growth constraints. The transition
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Class — Urban Vegetation Water Bodies Open land
Year |
1973 ha 5448 46639 2324 13903
% 7.97 68.27 3.40 20.35
1992 ha 18650 31579 1790 16303
% 27.30 46.22 2.60 23.86
2006 ha 29535 19696 1073 18017
% 43.23 28.83 1.57 26.37

Table 1. Greater Bangalore land use statistics
Tabla 1. Estadisticas del uso del suelo del Gran Bangalore.
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en personas por kildmetro cuadrado.

rules are defined for the 3 x 3 neighbourhood of a pi-
xel. The rules identify the neighbourhood needed for
the tested cell to urbanise.

The growth constraints reflect urbanisation strate-
gies adopted in the study area for certain land uses
such as conservation of the water bodies (lakes). Ur-
ban growth in the vicinity of such sites is constrained
by imposing rules that discourage urbanisation into
water bodies. The future state of a pixel at time (t+7)
from the current time (t) depends on three factors: (i)
current state of the pixel, (ii) current states of the neigh-
bourhood pixels, and (iii) transition rules that drive the
urban growth over time, which may be represented by

§"'(@) = f(S'(@).5' (c)iransition _rules) (4

where
S™ (&) = Future state of pixel a at time epoch t+1
S'(e) = Current state of pixel o at time epoch t

S'(7) = State of pixel t, which is a neighbourhood
pixel of pixel a.

Transition rules (¢) were designed to identify the
required neighbourhood urban level for a test pixel

to urbanise. The following rules were adopted from
AlKheder et al., (2007): If the pixel being transfor-
med is either water, road, residential or commercial,
then perform no change, otherwise if the pixel be-
longs to vegetation or open land, then its state will
be altered to urban, provided the population den-
sity is > threshold (P) and the number of surroun-
ding urban pixels are > threshold (R). Ris an integer
ranging from 0 to 8 (3x3 neighbourhood) and P is
a real number ranging from 0 to 1 (0.1 increment;
population density values were normalized from 0
to 1 for each direction in order to have effective CA
rules calibration).

Calibration

The calibration of urban CA model is done to deter-
mine optimal weights or parameters of the transi-
tion rules such as P or R mentioned above (Dietzel
and Clarke, 2006; Li and Yeh, 2001; Li et al., 2007;
Stevens et al., 2007; Wu, 2002). Calibration is an
integral part of the CA model design and develop-
ment process as it is in this step that one attempts
to ensure that the model provides reasonable pre-
dictions about current and future scenarios (Li and
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Figure 4. Direction wise population density for the year 1991 and 2001.
Figura 4. Densidad de poblacion direccional para los arnos 1991 y 2001.

Yeh, 2001, 2002; Waddell, 2005). It aims to define
the optimal set of CA rules such that the agreement
between simulated results and ground truth images
are as best as possible.

The relaxations allowed in CA helped to simu-
late more realistic urban growth that led to the
emergence of a large variety of rules. To achieve
this, two calibration schemes were used, namely
spatial and temporal calibrations. In spatial cali-
bration, the CA transition rules at a given time t
were modified spatially over the 2D grid space by
tuning the values of each rule set on a directional
basis to match the urban dynamics for each neigh-
bourhood with its site specific features, allowing
the model to take the variability in the spatial ur-
ban growth pattern into account for realistic mo-
delling. If the transition rules in a given direction
resulted in higher growth levels (overestimated),
they were modified to reduce the urban growth in
that direction. In case of underestimation, the rule
values of the direction under consideration were
tuned to increase the amount of urban growth to
match the real one. Therefore, spatial calibration is
meant to find the best set of rule values that best
fits a given direction according to its geographical

location. This is similar to the SLEUTH model (Sil-
va and Clarke, 2002), where the parameters can be
set best that simulate the application data by na-
rrowing both the spatial scale and the range of pa-
rameters in the calibration sequences. These para-
meters are then used to determine the parameter
values that optimally allow the model to run into
the future, i.e. to predict.

The oldest classified Landsat MSS image (of 1973)
of Bangalore (Figure 5) obtained by subsetting the
Greater Bangalore image (Figure 2) was used as input
to the CA model over which the transition rules were
applied to model the urban growth starting from this
time epoch. Dividing the study area on a direction (or
zones such as N, NE, E, SE, S, SW, W, and NW as ex-
plained in section 3) and further on a ward or neigh-
bourhood basis took into consideration the effect of
site specific features spatially. The same CA transition
rules were defined for each direction, however, with
different rule values. CA transition rules (¢) of the de-
veloped model were physically built over the input
imagery and the rules used a 3 x 3 neighbourhood

- Al-l,j in equation 5 to identify the test pixel’s future

t+1 . .
state, ¢, ; in equation 6.

294



Kumar, U., et al. 2014. Cellular Automata Calibration Model to Capture Urban Growth. Boletin Geoldgico y Minero, 125 (3): 285-299

B 1!?2 IN

B urban
B Vegetation
B witer bodies
[ Opentand

Figure 5. Bangalore city in 1973, 1992 and 2006 used in the CA mo-
del for simulation (subset of Greater Bangalore classified image).
Figura 5. La ciudad de Bangalore en 1973, 1992 y 2006 utilizadas en
el modelo AC para simulacion (subconjunto de la imagen clasifi-
cada del Gran Bangalore).
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The calibration (i.e., identifying best (R,P) para-
meter values) of such rules was performed spatially
on a ward level, Tw (where w represents individual
wards) to fit the local urban dynamic features and
over time to consider the temporal urban changes in
each direction, T, (where t represents time in years)
in equation 7.

é‘aﬁbrnred = f(Tw= }: E ¢) (7)

¢ in the calibration formula represents the criteria
selected to find the best rule set for a certain ward
spatial location T at a given time epoch T. This cri-
terion in the model represents the total modelling
errors/mismatch between modelled output and re-
ality that need to be minimised or best matched. ¢
in equation 8 was defined as a function of fitness,
F in equation 9 and total errors AE in equation 10.
Fitness and total errors measure the compatibility in
terms of urban count and pattern within each ward

with respect to reality, respectively (Al-Kheder, et al.,
2007).

¢ = Abs(F —100%) +AE (8)

Modeled wurban count

1= - X ] 000/;] (9)
Ground _truth _urban _count

Total ’ f
AE: ofa _€FFO!‘_(,()HH X]OO%
Total count

(10)

Once the CA transition rules were identified and
initialised for each direction, the model was run from
1973 to 1992. The 1992 image represents the first
ground truth being used for calibration. For each ward
or neighbourhood, the modelling accuracy is calcula-
ted as a ratio between the simulated and real urban
growth data. Over/underestimation is introduced to
represent how comparable the simulated result is to
the real one. This indicates how transition rules defi-
ned on a directional basis succeed in modelling the
real urban growth given the predefined conditions.
Calibration is meant to find the best set of rule values
specific to each direction for realistic urban growth
modelling.

Results and discussion

Simulation and subsequent urban modelling predic-
tion results, as shown in Table 2 and Figure 6 (zoo-
med version) do not exhibit a close match to the
reality from 1973 to 1992 in terms of urban count,
however, the pattern of urban growth matches in va-
rious directions to some extent. The reason for this
mismatch of the urban pixels is that the growth from
1973 to 1992 happened haphazardly, which was not
accounted for in the population census data. Thus,
they were not captured and reflected by the change
in population density of various wards in different
directions. In contrast, the simulated images of 2006
(zoomed in Figure 7) are closer to the real classified
image in terms of the spatial pattern of urban growth.

Prediction accuracy for each direction was used
as a basis for rule calibration. If a set of rules for a
particular direction produced underestimated results,
then it meant the growth rate was small and hence
the rules were modified to increase urban growth. For
overestimation, the rules were modified to reduce ur-
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1973 Simulation / 1992 Prediction

1992 Simulation / 2006 Prediction

Direction

Fitness % Total Error (AE%) Fitness % Total Error (AE%) ¢
North 52.58 32.39 79.82 101.71 30.82 32.53
Northeast 66.43 30.48 64.05 101.66 35.44 37.10
East 65.51 39.82 74.31 99.87 40.68 40.81
Southeast 42.28 29.72 87.44 99.89 36.86 36.97
South 46.39 33.33 86.93 105.36 29.18 34.54
Southwest 58.55 16.71 58.16 100.58 23.24 23.81
West 61.35 17.22 55.87 100.80 21.15 21.96
Northwest 86.13 33.08 46.95 102.90 36.08 38.98
Average 59.90 29.09 69.19 101.60 31.68 33.33

Table 2. Numerical evaluation results.
Tabla 2. Resultados de la evaluacion numérica.

ban growth. The transition rules for a direction were
repeatedly calibrated till the convergence criterion
was met. The classified image provides the reference
for calibration process. InTable 2, the Fitness %, Total
Error (AE %) and ¢ values for the year 1992 indicate a
poor match of the simulated image with the real image
(classified image), which is an indication of underesti-
mation of urban pixels in various directions. However,
the results for the 2006 simulated image (Table 2) indi-
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Figure 6. Classified images of 1973, real image and simulated image
of 1992. Red colour indicates urban areas, yellow represents other
classes (vegetation, water or open land) in real and simulated ima-
ges.

Figura 6. Imagenes clasificadas para 1973 e imagenes real y simu-
lada para 1992. El color rojo indica las zonas urbanas y el amarillo
representa las otras clases (vegetacion, agua y campo abierto) tan-
to en las imagenes reales como en las simuladas.

cate very good spatial prediction accuracy. The spatial
variability between various directions as compared
to the real image is small. This indicates the effect of
spatial calibration in matching each direction with its
realistic urban growth pattern through calibrating its
rules. It also helped in capturing finer details, whilst
calibrating the model over smaller spatial units to re-
duce modelling uncertainty. Visually, calibration on
a directional basis succeeds in preserving the urban
pattern over space and over time. The results of rule
values at the end of the calibration process indicate si-
milarity between growth in various directions, such as
in the east, west and northwest. In reality, these wards
have almost the same growth rate and pattern becau-
se of similar infrastructure, facilities, and more open
areas for outer growth and urban sprawl. Most of the-
se similar wards or neighbourhoods have ring roads
or highways passing through them that allow linear
urban growth to happen along them. The average fit-
ness value for the 1992 image was ~ 60% and the total
error was 29.09 with an approximate match of 71%. It
worth noting that for a highly accurate prediction, the
total modelled urban count and ground truth urban
count will be equal and therefore the fitness value (F)
will be 1 0r 100%.The total error AE is the error of omis-
sion and commission. The greater the value of AE, the
greater the percentage of error count is. There seems
to be some mismatch between the actual and simu-
lated urban pixel patterns in 1992 as this pattern was
not captured accurately by the change in population
density contours and the curve fits in various wards
and different directions. Simulation and prediction ur-
ban modelling results, as shown inTable 2 for the year
2006, show that the fitness results for prediction were
close in terms of urban count (values close to 100%)
between the modelled and real data with average fit-
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ness of 101.60 (which is a slight overestimate) and the
average total error of 31.68% was achieved. This indi-
cates an approximate match level of 69% on a pixel
by pixel basis between modelling and reality. Therefo-
re, the higher the value of ¢ in equation 8, the higher
the modelling error is. For the 2006 simulated image,
the average ¢ is 33.33, showing a more realistic result
compared to the actual urban growth pattern. This is
a high accuracy level compared to the results shown
in the literature for the urban land spatial fit area that
was only 28.15 to 44.6% (Yang and Lo, 2003). The clo-
se urban pattern match is also clear in Figure 7, where
the simulated images have urban distribution similar
to those shown in their corresponding real images.
This indicates the ability of CA based modelling and
calibration in spatial and temporal domains and also
proves their effectiveness in understanding human-
environmental interactions to a great extent. Based
on the objective of this study, cell space, cell states,
neighbourhoods, growth constraints, and calibration
followed by validation were carried out using simple
CA models for complex dynamic urban systems. The
state of any cell depends upon some function which
reacts to what is already in that cell as well as some

Real Simulatad Real Simulated
2005 2006 2006 2006
"%9 : §
.:i i:::f'. " & ¥
Naorth ~ South =
Mortheast Southwest
o “fi’a o il :\
g T ki =i ‘ 7 3
East West
Southeast MNorthwest

Figure 7. Real image and simulated image of 2006. Red colour in-
dicates urban areas, yellow represents other classes (vegetation,
water or open land).

Figura 7. Imagen real e imagen simulada para 2006. El color rojo
indica areas urbanas y el amarillo representa las otras clases (vege-
tacion, agua y campo abierto).

function which relates the cell to what is happening
in its immediate neighbourhood, which is the diffu-
sion component (Batty, 1999). The most attractive pro-
perty of CA models for simulating urban systems is
that local action in such models can give rise to global
forms which evolve or emerge spontaneously with no
hidden hand directing the evolution of the macros-
tructure (Batty et al., 1999). They can help in interpre-
ting, modelling, predicting and understanding the dy-
namics of natural resources.

Comparison of CA models with other urban pro-
cess models highlights certain merits, but there are
drawbacks such as (i) the relaxation of the original
CA scheme may lead to the loss of fundamental cha-
racteristics of simplicity and locality, or loss in the
model in which the CA component is no longer the
core. (ii) CA models are not suited to define general
urban CA, but are rather a method to define specific
models for each situation. (iii) CA generally produ-
ces descriptive models that tell us what is happening
but it does not tell us why? (iv) Data requirements
depend upon the factor considered in the model and
so, they are usually in opposition to flexibility (Sante
et al., 2010). Further research in this direction is re-
quired to focus on the drawbacks such as transition
rules considering road accessibility, distance to mul-
tiple urban centres in the city, slopes, accessibility to
railways, site suitability for development, population
density, etc.

Conclusion

This study explores the potential of implementing ce-
[lular automata to model the historical urban growth
over Bangalore from 1973 to 1992 and 1992 to 2006.
The main goal was to design the model as a function
of a local neighbourhood structure to minimise the
input data to the model. Satellite imagery represents
the medium over which the model works taking into
account spatial and temporal calibration based on
transition rules. Spatial calibration fits the model on a
directional basis to its site specific feature, whilst tem-
poral calibration adapts it to the urban growth dyna-
mic change over time, producing a good spatial match
between the real and simulated image data.

The technique demonstrated here was found effec-
tive in predicting urban growth and visualising it
through pixels in images. Such studies are important
for relating pixels in RS data and people in society
for sustainable development, pollution prevention,
global environmental change, and issues of human-
environmental interaction at different spatial and
temporal scales. The limitation of this work is that the
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current CA model only takes into account land use
categories, population density, and distance from
the city centre. There are many other factors, such as
distance from rail / roads, levels of services available
in different locations, education and employment op-
portunities, economic flow, etc. that are major trigge-
ring factors for urbanisation in developing countries
like India. Therefore, future study will involve consi-
dering agents and external factors (such as foreign
direct investment flow in the city, decisions related to
setting up special economic zones (SEZ), etc.) that can
act as a catalyst and driving force in the expansion of
cities. Land use category such as built-up land may be
further classified into their different forms using very
high spatial resolution imageries such as Quickbird,
IKONOQOS, etc.The detailed land use practices may fur-
ther improve the modelling result and give better pre-
diction accuracy.
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