aSchool of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India,
bDepartment of Energy, Tezpur University, Tezpur 784028, Assam, India
cDepartment of Scientific and Industrial Research, Ministry of Science and Technology, Government of India, New Delhi 110016, India
dCentre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016, India
eEnergy and Wetland Research Group, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India
fDepartment of Biological and Agricultural Engineering, University of California Davis, California 95616, USA


  1. Alfonso, D., Perpina, C., Pérez-Navarro, A., Penˇ alvo, E., Vargas, C., Cardenas, R., 2009. Methodology for   optimization of  distributed  biomass resources evaluation, management and final energy use. Biomass Bioenergy 33,  1070–1079.
  2. Angelis-Dimakis,  A.,   Biberacher,  M.,   Dominguez,  J.,   Fiorese,  G.,   Gadocha,  S., Gnansounou, E., et al.,  2011. Methods and tools to evaluate the availability of renewable energy sources. Renewable Sustainable Energy Rev.  15,  1182–1200.
  3. Arodudu, O., Helming, K., Wiggering, H., Voinov, A., 2017. Towards a more holistic sustainability assessment framework for  agro-bioenergy systems — a review. Environ. Impact Assess. Rev.  62,  61–75.
  4. Azapagic, A., Chalabi, Z., Fletcher, T., Grundy, C., Jones, M., Leonardi, G., et al.,  2013. An  integrated approach to assessing the environmental and health impacts of pollution in the urban environment: methodology and a case study. Process. Safe.  Environ. Prot. 91,  508–520.
  5. Baan, L.De.,  Alkemade, R., Koellner, T., 2013. Land use impacts on biodiversity in LCA: a global approach. Int.  J. Life Cycle Assess. 18,  1216–1230.
  6. Beccali, M.,  Columba, P., D’Alberti, V., Franzitta, V., 2009. Assessment of  bioenergy potential  in Sicily: a GIS-based support  methodology. Biomass Bioenergy 33, 79–87.
  7. Bengtsson, M.,  Carlson, R., Molander, S., Steen, B., 1998. An  approach for  handling geographical information in life  cycle assessment using a relational database. J. Hazard. Mater. 61,  67–75.
  8. Botha, T., von Blottnitz, H.,  2006. A comparison of  the environmental benefits of bagasse-derived electricity and fuel ethanol on a life-cycle basis. Energy Policy 34,  2654–2661.
  9. Butnar,  I.,  Rodrigo,  J.,  Gasol,  C.M.,   Castells,  F.,  2010.  Life-cycle assessment   of electricity  from  biomass:  case  studies  of   two  biocrops  in  Spain. Biomass Bioenergy 34,  1780–1788.
  10. Cherubini, F., Bird,  N.D., Cowie, A., Jungmeier, G., Schlamadinger, B., Woess-Gallasch, S.,  2009.  Energy-and  greenhouse  gas-based  LCA  of   biofuel and  bioenergy systems:  key issues, ranges and recommendations.  Resour. Conserv. Rec.  53, 434–447.
  11. Choudhary, S., Liang, S., Cai,  H.,  Keoleian, G.A., Miller, S.A., Kelly,  J., Xu,  M.,  2014. Reference and functional unit can change bioenergy pathway choices. Int.  J. Life Cycle Assess. 19,  796–805.
  12. Contreras,  A.M.,   Rosa,  E.,   Pérez,  M.,   van  Langenhove,  H.,   Dewulf,  J.,   2009. Comparative life  cycle assessment  of  four alternatives for  using by-products of cane sugar production. J. Clean. Prod. 17,  772–779.
  13. Danielsen, F., Beukema, H., Burgess, N.D.,  Parish, F., Brühl, C.A., Donald, P.F., et al., 2009. Biofuel plantations  on forested lands: double jeopardy for  biodiversity and climate. Conserv. Biol.  23,  348–358.
  14. Dresen, B., Jandewerth, M., 2012. Integration of spatial analyses into LCA-calculating GHG emissions with geoinformation systems. Int.  J. Life Cycle Assess. 17,  1094– 1103.
  15. Ebadian, M.,  Sowlati, T., Sokhansanj, S., Stumborg, M.,  Townley-Smith, L., 2011. A new  simulation  model  for   multi-agricultural  biomass  logistics system  in bioenergy production. Biosys. Eng.  110, 280–290.
  16. Egbendewe-Mondzozo, A., Swinton, S.M., Izaurralde, C.R., Manowitz, D.H., Zhang, X., 2011. Biomass supply from alternative cellulosic crops and crop residues: a spatially  explicit  bioeconomic  modeling  approach.  Biomass Bioenergy 35, 4636–4647.
  17. Fargione, J., Hill,  J., Tilman, D., Polasky, S., Hawthorne, P., 2008. Land clearing and the biofuel carbon debt. Science 319, 1235–1238.
  18. Ferrarini,  A.,  Serra,  P.,  Almagro,  M.,   Trevisan,  M.,   Amaducci,  S.,  2014.  Linking bioenergy and ecological services along field margins:  The   HEDGE-BIOMASS project. In:   22nd  European Biomass Conference and Exhibition, 23–26 June 2014, Hamburg, Germany.
  19. Fiedler, P., Lange, M., Schultze, M., 2007. Supply logistics for  the industrialized use of  biomass – principles and planning approach, LINDI  2007, In:  International Symposium on Logistics and Industrial Informatics, 13–15 September, 2007, Wildau, Germany.
  20. Foody, G.M.,  2002. Status of land cover classification accuracy assessment. Remote Sens. Environ. 80.  185e201.
  21. Garcia, D.A., Sangiorgio, S., Rosa, F., 2015. Estimating the potential biomasses energy source of  forest and agricultural residues in the Cinque Terre Italian National Park. Energy Procedia 82,  674–680.
  22. Gasol,  C.M.,   Gabarrell,  X.,  Rigola,  M.,   González-García,  S.,  Rieradevall,  J.,  2011.
    Environmental assessment: (LCA)  and spatial modelling (GIS)  of  energy crop implementation on local scale. Biomass Bioenergy 35,  2975–2985.
  23. Geyer, R., Lindner, J.P., Stoms, D.M.,  Davis, F.W.,  Wittstock, B., 2010. Coupling GIS and LCA for  biodiversity assessments of  land use Part 1: inventory modeling. Int.  J. Life Cycle Assess. 15,  454–467.
  24. Geyer, R., Stoms, D., Kallaos, J., 2013. Spatially-explicit life  cycle assessment of sun- to-wheels transportation pathways in the U.S. Environ. Sci.  Technol. 47,  1170– 1176.
  25. Gibbs, H.K.,  Johnston, M.,  Foley, J.A., Holloway, T., Monfreda, C., Ramankutty,  N., Zaks, D., 2008. Carbon payback times for  crop-based biofuel expansion in the tropics: the effects of  changing yield and  technology. Environ. Res.   Lett. 3, 034001.
  26. Gnansounou,  E.,  Vaskan,  P.,  Pachón,  E.R.,  2015. Comparative techno-economic assessment and LCA of selected integrated sugarcane-based biorefineries. Bioresour. Technol. 196, 364–375.
  27. Goedkoop, M., Oele, M., Leijting, J., Ponsioen, T., Meijer, E., 2013. Introduction to LCA with SimaPro. PRé.
  28. Gomez, A., Rodrigues, M., Montanes, C., Dopazo, C., Fueyo, N., 2010. The  potential for electricity  generation  from  crop  and  forestry  residues  in  Spain. Biomass Bioenergy 34,  703–719.
  29. Gorniak-Zimroz, J., Pactwa, K., 2015. The  use of  spatial data in granite deposit life cycle assessment. Procedia. Earth. Planet. Sc. 15,  474–481.
  30. Haase, M.,  Rösch, C., Ketzer, D.,  2016. GIS-based assessment  of  sustainable crop residue potentials in European regions. Biomass Bioenergy 86,  156–171.
  31. Hellweg, S., Canals, L.M.i., 2014. Emerging approaches, challenges and opportunities in life  cycle assessment. Science 344, 1109–1113.
  32. Herr,  A.,  Dunlop,  M.,  2011.  Bioenergy in  Australia:  an  improved  approach  for estimating   spatial   availability  of    biomass  resources  in  the   agricultural production zones. Biomass Bioenergy 35,  2298–2305.
  33. Hiloidhari, M., Baruah, D.C., 2011. Crop residue biomass for  decentralized electrical power generation in rural areas (part 1): investigation of  spatial availability. Renewable Sustainble Energy Rev.  15,  1885–1892.
  34. Hiloidhari, M., Baruah, D., Mahilary, H., Baruah, D.C., 2012. GIS based assessment of rice (Oryza sativa) straw biomass as an alternative fuel for  tea (Camellia sinensis L.) drying in Sonitpur district of Assam, India. Biomass Bioenergy 44,  160–167.
  35. Ho,  D.P., Ngo,  H.H.,  Guo, W.,  2014. A mini review on renewable sources for  biofuel. Bioresour. Technol. 169, 742–749.
  36. Höhn, J., Lehtonen, E., Rasi,  S., Rintala, J., 2014. A Geographical Information System (GIS) based methodology for  determination of potential biomasses and sites for biogas plants in southern Finland. Appl. Energy 113, 1–10.
  37. Hua, M.-C.,  Huang, A.-L., Wen, T.-H.,  2013. GIS-based biomass resource utilization for  rice straw cofiring in the Taiwanese power market. Energy 55,  354–360.
  38. Humpenoder, F., Schaldach, R., Cikovani, Y., Schebek, L., 2013. Effects of  land-use change on the carbon balance of  1st generation biofuels: an analysis for  the European Union combining spatial modeling and LCA. Biomass Bioenergy 56, 166–178. The   International   Renewable  Energy Agency (IRENA),   2015.  Global bioenergy supply and demand projections.< http://www.irena.org/>.
  39. Jiang, D., Zhuang, D., Fu, J., Huang, Y., Wen, K., 2012. Bioenergy potential from crop residues in China: availability and distribution. Renewable Sustainble Energy Rev.  16,  1377–1382.
  40. Kaundinya, D.P., Balachandra, P., Ravindranath, N.H.,  Ashok, V., 2013. A GIS (geographical information  system)-based  spatial  data  mining  approach  for optimal   location  and   capacity  planning  of    distributed   biomass  power generation facilities: a case study of Tumkur district, India. Energy 52,  77–88.
  41. Kimming, M.,  Sundberg, C., Nordberg, Å., Baky, A., Bernesson, S., Norén, O., et  al., 2011. Biomass from agriculture in small-scale combined heat and power plants – a comparative life  cycle assessment.  Biomass Bioenergy 35,  1572–1581. Kurka,   T.,   Jefferies,  C.,  Blackwood,  D.,   2012.  GIS-based location  suitability  of decentralized, medium scale bioenergy developments to estimate transport CO2 emissions and costs. Biomass Bioenergy 46,  366–379.
  42. Kuzevicˇová,  Zˇ .,   Gergel’ová,  M.,   Našcˇáková,  J.,  Kuzevicˇ ,   Š.,   2013.  Proposal  of methodology for   determining of   potential  residual biomass for   agriculture and forestry in Slovak republic. Acta. Montan. Slovaca. 18,  9–16.
  43. Lapola, D.M., Schaldach, R., Alcamo, J., Bondeau, A., Koch, J., Koelking, C., et al., 2010. Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proc. Natl. Acad. Sci.  107, 3388–3393.
  44. Lin,  T.,  Rodríguez, L.F.,  Shastri, Y.N.,  Hansen, A.C.,  Ting,   K.C.,  2013.  GIS-enabled biomass-ethanol   supply   chain   optimization:   model   development   and Miscanthus application. Biofuels, Bioprod. Biorefin. 7, 314–333.
  45. Liska,  A.J., Yang, H.,  Milner, M.,  Goddard, S., Blanco-Canqui, H., Pelton, M.P.,  2014. Biofuels from crop residue can reduce soil carbon and increase CO2  emissions. Nat. Clim. Change. 4, 398–401.
  46. Long,     H.,    Li,    X.,    Wang,   H.,    Jia,    J.,    2013.  Biomass  resources  and   their bioenergy potential  estimation:  a review. Renewable Sustainble Energy Rev. 26,  344–35
  47. Lourinho, G., Brito, P., 2015. Assessment of biomass energy potential in a region of
    Portugal (Alto Alentejo). Energy 81,  189–201.
  48. Mafakheri,  F.,   Nasiri,  F.,   2014.  Modeling  of   biomass-to-energy  supply  chain operations: applications, challenges and research directions. Energy Policy 67,
  49. Malico, I., Carrajola, J., Gomes, C.P.,  Lima, J.C., 2016. Biomass residues for  energy production  and  habitat  preservation.  Case study  in  a  montado  area  in Southwestern Europe. J. Clean. Prod. 112, 3676–3683. Messineo, A., Volpe, R., Marvuglia, A., 2012. Ligno-cellulosic biomass exploitation for  power generation:  a case study in Sicily. Energy 45,  613–625.
  50. Monforti, F., Bódis, K., Scarlat, N., Dallemand, J.F., 2013. The  possible contribution of agricultural crop residues to renewable energy targets in Europe: a spatially explicit study. Renewable Sustainble Energy Rev.  19,  666–677. Muench, S., 2015. Greenhouse gas mitigation potential of electricity from biomass. J. Clean. Prod. 103, 483–490.
  51. Muench,  S.,  Guenther,  E.,  2013.  A  systematic  review  of   bioenergy  life   cycle assessments.  Appl. Energy 112, 257–273.
    Mutel,  C.L.,   Pfister,  S.,   Hellweg,  S.,   2012.  GIS-based  regionalized   life    cycle assessment:  how  big    is   small  enough?  Methodology  and  case  study  of electricity generation. Environ. Sci.  Technol. 46,  1096–1103.
  52. Nguyen, T.L.T., Hermansen, J.E., Mogensen, L., 2013. Environmental performance of crop residues as an energy source for  electricity production: the case of wheat straw in Denmark. Appl. Energy 104, 633–641.
  53. Perpina, C., Alfonso, D., Pe’rez-Navarro, A., Penalvo, E., Vargas, C., Cardenas, R., 2009. Methodology based on Geographic Information Systems for  biomass logistics and transport optimisation. Renewable Energy 34,  555–565.
  54. Plevin,  R.J.,   Delucchi,  M.A.,   Creutzig,  F.,   2014.  Using  attributional   life    cycle assessment  to  estimate  climate-change mitigation benefits misleads policy makers. J. Ind. Ecol.  18,  73–83.
  55. Ramachandra, T.V., Krishna, S.V., Shruthi, B.V., 2005. Decision support system to assess regional biomass energy potential. Int.  J. Green Energy 1, 407–428. Ramjeawon, T., 2008. Life cycle assessment of electricity generation from bagasse in
  56. Mauritius. J. Clean. Prod. 16,  1727–1734. Rathore, D., Pant, D., Singh, A., 2013. A comparison of life  cycle assessment studies of   different  biofuels.  In:   Singh,  A.,  Pant,  D.,   Olsen,  S.I.   (Eds.),  Life   Cycle Assessment  of   Renewable  Energy  Sources.  Green  Energy  and  Technology Series. Springer-Verlag, London.
  57. Reap, J., Roman, F., Duncan, S., Bras, B., 2008. A survey of unresolved problems in life cycle assessment part 1: goal and scope and inventory analysis. Int.  J. Life Cycle Assess. 13,  290–300.
  58. Roostaei, J., Zhang, Y., 2016. Spatially explicit life  cycle assessment: opportunities and challenges of  wastewater-based  algal biofuels in the United States. Algal. Res.  10.1016/j.algal.2016.08.008.
  59. Sacchelli,  S.,   Meob,  I.D.,   Palett,  A.,   2013.  Bioenergy production  and  forest multifunctionality: a trade-off analysis using multiscale GIS  model in a case study in Italy. Appl. Energy 104, 10–20.
  60. Sanscartier, D., Dias, G., Deen, B., Dadfar, H., McDonald, I., MacLean, H.L., 2014. Life cycle greenhouse  gas emissions  of  electricity generation from corn cobs in Ontario, Canada. Biofuels. Bioprod. Biorefin. 8, 568–578.
  61. Searchinger, T., Heimlich, R., Houghton, R.A., Dong, F., Elobeid, A., Fabiosa, J., et al., 2008. Use   of  U.S.  croplands for  biofuels increases greenhouse gases through emissions from land-use change. Science 319, 1238–1240.
  62. Sebastián, F., Royo, J., Gómez, M., 2011. Cofiring versus biomass-fired power plants: GHG  (Greenhouse Gases) emissions savings comparison by  means of LCA (Life Cycle Assessment) methodology. Energy 36,  2029–2037.
  63. Shafie, S.M., Masjuki, H.H.,  Mahlia, T.M.I., 2014. Life cycle assessment of rice straw- based power generation in Malaysia. Energy 70,  401–410.
  64. Shi,  X., Elmore, A., Li, X., Gorence, N.J., Jin,  H., Zhang, X., et al.,  2008. Using spatial information technologies to select sites for  biomass power plants: a case study in Guangdong Province, China. Biomass Bioenergy 32,  35–43. Silalertruksa, T., Gheewala, S.H.,  2013. A comparative LCA of  rice straw utilization
    for  fuels and fertilizer in Thailand. Bioresour. Technol. 50,  412–419.
  65. Singh, A.,  Olsen, S.I.,  2012. Key   issues in life   cycle assessment  of  biofuels. In: Gopalakrishnan, K. et al.  (Eds.), Sustainable Bioenergy and Bioproducts, Green Energy and  Technology. Springer-Verlag, London Limited. http://dx.doi.org/ 10.1007/978-1-4471-2324-8_11.
  66. Singh, A., Nizami, A., Korres, N.E., Murphy, J.D., 2011. The  effect of reactor design on the sustainability of  grass biomethane. Renewable Sustainble Energy Rev.  15, 1567–1574.
  67. Singh, J., Panesar, B.S., Sharma, S.K., 2011. Geographical distribution of agricultural residues and optimum sites of biomass based power plant in Bathinda, Punjab. Biomass Bioenergy 35,  4455–4460.
  68. Singh, A., Olsen, S.I., Pant, D., 2013. Importance of life  cycle assessment of renewable energy sources. In:  Singh, A. et al.  (Eds.), Life  Cycle Assessment  of  Renewable Energy Sources, Green Energy and Technology. Springer-Verlag, London. http:// dx.doi.org/10.1007/978-1-4471-5364-1_1.
  69. Soam, S., Borjesson, P., Sharma, P.K., Gupta, R.P., Tuli,  D.K., Kumar, R., 2017. Life cycle assessment of rice straw utilization practices in India. Bioresour. Technol. 228, 89–98.
  70. Stephen, J.D., Sokhansanj, S., Bi, X., Sowlati, T., Kloeck, T., Townley-Smith, L., et al.,
    2010. Analysis of  biomass feedstock availability and variability for  the Peace River region of Alberta, Canada. Biosys. Eng.  105, 103–111.
  71. Sultana, A., Kumar, A., 2012. Optimal siting and size of  bioenergy facilities using geographic information system. Appl. Energy 94,  192–201.
    Tiba, C., Candeias, A.L.B., Fraidenraich, N., de Barbosa, E.M.S., Neto, P.B., de,  C., Filho,
  72. J.B.,  de,   M.,  2010. A  GIS-based decision support  tool for   renewable energy management and planning in semi-arid rural environments of  northeast  of Brazil. Renewable Energy 35,  2921–2932.
  73. Tilman, D., Socolow, R., Foley, J.A., Hill,  J., Larson, E., Lynd, L., et al.,  2009. Beneficial biofuels-The   food,   energy,   and    environment    trilemma.    Science   325, 270–271.
  74. Tonini, D.,  Hamelin, L.,  Alvarado-Morales, M.,  Astrup, T.F.,  2016. GHG   emission factors for  bioelectricity, biomethane, and bioethanol quantified for  24 biomass substrates  with consequential  life-cycle assessment. Bioresour. Technol. 208,
  75. Tsiropoulos, I.,  Faaij, A.P.C.,  Seabra, J.E.A., Lundquist, L., Schenker, U.,  Briois,  J.-F., Patel, M.K., 2014. Life cycle assessment of sugarcane ethanol production in India in comparison to Brazil. Int.  J. Life Cycle Assess. 19,  1049–1067. World  Bioenergy Association, 2015.  World  Bioenergy Statistics  2015.  <http:// www.worldbioenergy.org>. (accessed 10.10.15).
  76. Yu, H., Wang, Q., Ileleji, K.E., Yu, C., Luo, Z., Cen,  K., et al., 2012. Design and analysis of geographic distribution of biomass power plant and satellite storages in China. Part 1: straight-line delivery. Biomass Bioenergy 46,  773–784.
  77. Yue, C., Wang, S., 2006. GIS-based evaluation of multifarious local renewable energy sources: a case study of the Chigu area of southwestern Taiwan. Energy Policy 34,  730–742.
  78. Zubaryeva,  A.,  Zaccarelli,  N.,   Giudice,  C.D.,  Zurlini,  G.,  2012.  Spatially explicit assessment of  local biomass availability for  distributed  biogas production via anaerobic co-digestion – Mediterranean case study. Renewable Energy 39,  261– 270.




Citation : Moonmoon Hiloidhari, D.C. Baruah, Anoop Singh, Sampriti Kataki, Kristina Medhi, Shilpi Kumari, T.V. Ramachandra, B.M. Jenkins, Indu Shekhar Thakur, (2017). Emerging role of Geographical Information System (GIS), Life Cycle Assessment (LCA) and spatial LCA (GIS-LCA) in sustainable bioenergy planning. Hiloidhari et al. / Bioresource Technology, 2017, PP: 1–9, http://dx.doi.org/10.1016/j.biortech.2017.03.079.
* Corresponding Author :
Dr. T.V. Ramachandra
Energy & Wetlands Research Group, Centre for Ecological Sciences, Indian Institute of Science, Bangalore – 560 012, India.
Tel : +91-80-2293 3099/2293 3503 [extn - 107],      Fax : 91-80-23601428 / 23600085 / 23600683 [CES-TVR]
E-mail : cestvr@ces.iisc.ernet.in, energy@ces.iisc.ernet.in,     Web : http://wgbis.ces.iisc.ernet.in/energy, http://ces.iisc.ernet.in/grass
E-mail    |    Sahyadri    |    ENVIS    |    GRASS    |    Energy    |      CES      |      CST      |    CiSTUP    |      IISc      |    E-mail