Abstract—The widely used Bayesian classifier is based on the assumption of equal prior probabilities for all the classes. However, inclusion of equal prior probabilities may not guarantee high classification accuracy for the individual classes. Here, we propose a novel technique—Hybrid Bayesian Classifier (HBC)—where the class prior probabilities are determined by unmixing a supplemental low spatial–high spectral resolution multispectral (MS) data that are assigned to every pixel in a high spatial–low spectral resolution MS data in Bayesian classification. This is demonstrated with two separate experiments—first, class abundances are estimated per pixel by unmixing Moderate Resolution Imaging Spectroradiometer data to be used as prior probabilities, while posterior probabilities are determined from the training data obtained from ground. These have been used for classifying the Indian Remote Sensing Satellite LISS-III MS data through Bayesian classifier. In the second experiment, abundances obtained by unmixing Landsat Enhanced Thematic Mapper Plus are used as priors, and posterior probabilities are determined from the ground data to classify IKONOS MS images through Bayesian classifier. The results indicated that HBC systematically exploited the information from two image sources, improving the overall accuracy of LISS-III MS classification by 6% and IKONOS MS classification by 9%. Inclusion of prior probabilities increased the average producer’s and user’s accuracies by 5.5% and 6.5% in case of LISS-III MS with six classes and 12.5% and 5.4% in IKONOS MS for five classes considered.

Index Terms—Bayesian classifier, prior probability, unmixing.

I. INTRODUCTION

IMAGE classification using conventional Bayesian classifier is a supervised method based on prior probabilities [1]. Prior probability resolves confusions among classes that are not well separable [2] and is therefore effective in improving classification accuracy. Bayesian classifier is generally used with the assumption that prior probabilities are equal, as reliable prior probabilities are not easily available. However, with the use of equal prior probabilities, the performance of the classifier is not optimal [3], which is evident from the misclassified pixels primarily due to spectral confusion between classes, apart from the increased computing and sampling requirements [4]. The theoretical analysis of the effect of prior probability has been discussed in detail by Mingguo et al. [5]. Earlier works used prior probabilities based on previous year crop statistics [6], geographical data [7], elevation data [8], and spatial characteristics specified through a Markov random field model at reference resolution [9], improving the overall accuracy and kappa coefficient. Therefore, it is desirable to obtain reliable prior probabilities for each spectral class and use them to classify the pixels that are likely to misclassify [1], even though they are difficult to determine within the same time period and for the same spectral classes.

In this context, a new classification method—Hybrid Bayesian Classifier (HBC)—based on linear unmixing and Bayesian classifier is proposed to assign a class label to each pixel in a high spatial–low spectral resolution (HS-LSR) multispectral (MS) data. The prior probabilities of the different classes in the Bayesian classifier to classify each pixel in the HS-LSR data, such as the Indian Remote Sensing Satellite Linear Imaging Self Scanner-III (IRS LISS-III) MS and IKONOS MS, are obtained from abundance estimates by unmixing Landsat Enhanced Thematic Mapper Plus (ETM+) images as LS-LSR MS data, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat ETM+, respectively. The terms HS-LSR and LS-LSR have been used in a relative sense here, depending upon the spatial resolution of the images. For example, in the first experiment, MODIS bands are referred as LS-LSR and the Indian Remote Sensing Satellite (IRS) LISS-III MS bands are HS-LSR data, while in the second experiment, Landsat ETM+ bands are LS-LSR, and IKONOS MS bands are HS-LSR data. The reason for selecting MODIS and Landsat Enhanced Thematic Mapper Plus (ETM+) images as LS-LSR Supplement data is because of their economic viability and high temporal resolution that enables their procurement for any part of the globe, throughout the year, corresponding to any HS-LSR data. However, the technique, in general, can be applied on any other LS-LSR (such as hyperspectral bands) and HS-LSR (such as MS bands) data classification. The novelty of this approach lies in the fact that LS-LSR and HS-LSR MS data are combined to improve the classification results, which can be thought of as a fusion process, in the sense that information from two different sources.
(sensors) are combined to arrive at an improved classified image by systematically exploiting the relevant information from both sources, as shown in Fig. 1. Zhukov et al. [10] attempted a similar multisensor multisolution image fusion based on low spatial resolution (LSR) unmixing and high spatial resolution (HSR) classification. However, the end product was not a classified image but a set of MS fused images equivalent to the number of LSR bands at the HSR image dimension. In the following section, linear unmixing using orthogonal subspace projection (OSP) and Bayesian classifier are reviewed. The proposed HBC is discussed in Section III, while Section IV demonstrates the experimental results and validation followed by conclusion in Section V.

II. REVIEW OF METHODS

A. Linear Unmixing

With K spectral bands and M classes \((C_1, \ldots, C_M)\), each pixel has an associated K-dimensional pixel vector \(y = (y_1, \ldots, y_K)^T\) whose components are the gray values corresponding to the K spectral bands. Let \(E = [e_1, \ldots, e_M]\), where, for \(m = 1, \ldots, M\), \(e_m\) is a \(K \times 1\) column vector representing the endmember spectral signature of the \(m\)th target material. For a pixel, let \(\alpha_m\) denote the fraction of the \(m\)th target-material signature and \(\alpha = (\alpha_1, \ldots, \alpha_M)^T\) denote the \(M\)-dimensional abundance column vector. The linear mixture model for \(y\) is given by

\[
y = E\alpha + \eta
\]

where \(\eta = (\eta_1, \ldots, \eta_K)^T\) are independent identically distributed \(N(0, \sigma^2)\) [11]. Equation (1) represents a standard signal-detection model where \(E\alpha\) is a desired signal vector to be detected. Since, OSP detects one signal (target) at a time, we divide a set of \(M\) targets into desired \((C_m)\) and undesired \((C_1, \ldots, C_{m-1}, C_{m+1}, \ldots, C_M)\) targets. A logical approach is to eliminate the effects of the undesired targets that are considered as “interferers” to \(C_m\) before the detection of \(C_m\) takes place. Now, in order to find \(\alpha_m\), the desired target material is \(e_m\). The term \(E\alpha\) in (1) can be rewritten to separate the desired spectral signature \(e_m\)

\[
y = e_m\alpha_m + Rr + \eta
\]

where \(r = (\alpha_1, \ldots, \alpha_{m-1}, \alpha_{m+1}, \ldots, \alpha_M)\) and \(R = [e_1, \ldots, e_{m-1}, e_{m+1}, \ldots, e_M]\). Thus the interfering signatures in \(R\) can be removed by the operator

\[
P = (I - RR^T R)^{-1} R^T
\]

which is used to project \(y\) into a space orthogonal to the space spanned by the interfering spectral signatures, where \(I\) is a \(K \times K\) identity matrix [12]. Operating on \(y\) with \(P\) and noting that \(PR = 0\)

\[
P y = P e_m\alpha_m + P\eta.
\]

After maximizing the signal-to-noise ratio, an optimal estimate of \(\alpha_m\) is

\[
\hat{\alpha}_m = \frac{y^T P T P y}{e_m^T P T P e_m}
\]

Note that \(1 \geq \alpha_m \geq 0\), and thus, \((\alpha_1, \ldots, \alpha_M)\) can be taken as proportional probabilities of the \(M\) classes, i.e., \(P(C_m) \propto \alpha_m\).

B. Bayesian Classifier

Associated with any pixel, there is an observation \(y\). With \(M\) classes \((C_1, \ldots, C_M)\), Bayesian classifier calculates the posterior probability of each class conditioned on \(y\) [13]

\[
P(C_m | y) = \frac{P(y | C_m) P(C_m)}{P(y)}
\]

In (6), since \(P(y)\) is constant for all classes, only \(P(y | C_m) P(C_m)\) is considered. \(P(y | C_m)\) is computed assuming class conditional independence; therefore, \(P(y | C_m)\) is given by

\[
P(y | C_m) = \prod_{k=1}^{K} P(y_k | C_m).
\]

III. NEW HBC

HBC uses the abundance of each class obtained from LS-HSR data by linear unmixing as prior probability while classifying the H-SLSR data using Bayesian classifier of the same geographical area and time frame. That is, given the observation vector \(y\) for a pixel, it is classified to fall in class \(l\) if \(l = \text{ArgMax}_{m} P(y | C_m) P(C_m)\), where \(P(y | C_m)\) is as that in (7), calculated using the HS-LSR data, and \(P(C_m) \propto \alpha_m\), calculated using the LS-HSR data. The assumptions in this method are the following: 1) If there are \(r\) HS-LSR pixels contained in one LS-HSR pixel, i.e., the resolution ratio is \((r : 1)\), the prior probabilities for all the \(r\) HS-LSR pixels are equal corresponding to the same LS-HSR pixel and 2) the two data types have a common origin or upper left corner, i.e., the edges of the \(r \times r\) HS-LSR pixels overlaps exactly with the corresponding LS-HSR pixel. The limitations are as follows: 1) \((K-1)\) should be \(\geq M\) in the LS-HSR data and 2) \(M\) in HS-LSR should be \(\leq M\) in the LS-HSR data.

IV. EXPERIMENTAL RESULTS

Two separate experiments were carried out. In the first case, LISS-III MS data (three bands of 23.5 m × 23.5 m spatial
of 5320 size and MODIS eight-day composite data (seven bands of 250 m × 250 m, acquired in December 19–26, 2002) of 532 × 546 dimension, were coregistered with known ground-control points (rmse – 0.11). Training data were collected from the ground representing approximately 10% of the study area covering the entire spectral gradient of the classes. Separate test data were collected for validation. An LISS-III MS classified image using conventional Bayesian classifier is shown in Fig. 2(a). Assuming that there are six (fixed) numbers of representative endmembers (pure pixels), the entire image was modeled in terms of those spectral components, extracted using N-FINDR algorithm [14] from the MODIS images. In the absence of pure pixels, alternative algorithms [15] can be used for endmember extraction, which is a limitation of N-FINDR. It may be noted that some objects (for example, buildings with concrete roofs, tiled roofs, asphalt, etc.) exhibit high degrees of spectral heterogeneity representing variable endmembers. This intraclass spectral variation with variable endmembers can be addressed through techniques discussed in [16]–[18] and is beyond the scope of this paper.

Abundance values were estimated for each pixel through unmixing and used as prior probabilities in HBC to classify LISS-III MS data [Fig. 2(b)]. Table I is the class statistics, and Table II indicates the producer’s and user’s accuracies. The overall accuracy and kappa for HBC (93.54% and 0.91) is higher than the Bayesian classifier (87.55% and 0.85). For any particular class, if the reference data has more pixels with correct label, the producer’s accuracy is higher, and if the pixels with the incorrect label in classification result are less, the user’s accuracy is higher [5]. The Bayesian classifier wrongly classified many pixels belonging to waste/barren/fallow as built-up. The forest class was overestimated, and the plantation was underestimated by the Bayesian classifier. The only minority class in the study area is water bodies. Classified image using conventional Bayesian classifier had 1.08% (8854 ha) of water bodies in the study area. After the ground visit, we found that there are not many water bodies, and the extents of most individuals were <2000 m². Therefore, only a few water bodies that had spatial extent ≥ 62 500 m² could be used as endmembers. The minimum detected water class was 5% using unmixing of LS-HSR data. It may have happened that the prior probability was unlikely for this class while classifying the LISS-III MS data using HBC. The classified image obtained from HBC showed 0.81% (66.20 ha) of water bodies. A few pixels were wrongly classified using HBC; therefore, the producer’s accuracy decreased from 90.91% (in conventional Bayesian classifier) to 88.18% (in HBC). However, given the same set of training pixels for classification, the user’s accuracy has increased from 88.89% to 97%. The producer’s accuracy increased for agriculture (2.6%), built-up (4.3%), forest (7%), plantation (11.5%), and wasteland (10.6%), and the user’s accuracy increased for agriculture (8%), built-up (16.6%), forest (7.6%), and water bodies (8%) in the HBC output. On the other hand, the producer’s accuracy decreased (2.7%) for water bodies, and the user’s accuracy decreased (−0.7%) for plantation and wasteland classes, in agreement with similar observations reported in [5]. HBC was intended to improve classification accuracies by correctly classifying pixels which were likely to be misclassified by Bayesian classifier. Therefore, a cross comparison of the two classified images located the pixels that were assigned different class labels at the same location. These wrongly classified pixels, when validated with ground data, revealed a 6% (~1 742 832 pixels) improvement in classification by HBC.

In the second experiment, IKONOS MS data (four bands of 4 m, acquired on November 24, 2004) of 700 × 700 size and Landsat ETM+ data (six bands, excluding thermal and panchromatic, of 30 m, acquired on November 22, 2004) of 100 × 100 dimension were coregistered (rmse–0.09). The Landsat pixels were resampled to 28 m so that 49 IKONOS pixels would fit in one Landsat pixel. The scenes correspond to Bangalore City, India, near the central business district, having race course, bus stand, railway lines, parks, built-up with concrete roofs, asbestos roofs, blue plastic roofs, coal tarred roads

Table I

<table>
<thead>
<tr>
<th>Class</th>
<th>Ha</th>
<th>%</th>
<th>HFC</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>155,451</td>
<td>19.04</td>
<td>142931</td>
<td>17.51</td>
</tr>
<tr>
<td>Builtup</td>
<td>139,759</td>
<td>17.12</td>
<td>79280</td>
<td>9.71</td>
</tr>
<tr>
<td>Forest</td>
<td>93,241</td>
<td>11.42</td>
<td>55721</td>
<td>6.83</td>
</tr>
<tr>
<td>Plantation</td>
<td>89,493</td>
<td>10.96</td>
<td>176132</td>
<td>21.58</td>
</tr>
<tr>
<td>Waste land</td>
<td>329,473</td>
<td>40.36</td>
<td>355587</td>
<td>43.56</td>
</tr>
<tr>
<td>Water bodies</td>
<td>8854</td>
<td>1.08</td>
<td>66.20</td>
<td>0.81</td>
</tr>
</tbody>
</table>

Table II

<table>
<thead>
<tr>
<th>Class</th>
<th>Bayesian classifier</th>
<th>HBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>87.54</td>
<td>90.15</td>
</tr>
<tr>
<td>Builtup</td>
<td>85.11</td>
<td>89.39</td>
</tr>
<tr>
<td>Forest</td>
<td>85.71</td>
<td>92.61</td>
</tr>
<tr>
<td>Plantation</td>
<td>84.44</td>
<td>95.95</td>
</tr>
<tr>
<td>Waste land</td>
<td>88.03</td>
<td>98.67</td>
</tr>
<tr>
<td>Water bodies</td>
<td>90.91</td>
<td>97.00</td>
</tr>
<tr>
<td>Average</td>
<td>86.96</td>
<td>92.49</td>
</tr>
</tbody>
</table>

PA – Producer’s Accuracy; UA – User’s Accuracy.
Bayesian classifier wrongly classified and overestimated many accuracy increased by 0.33% for all the classes in HBC. The producer’s accuracy increased by 9% for HBC (89.53% and 0.87) is higher than the Bayesian classifier, improving the overall accuracy by 6% and 9% with IRS LISS-III MS and IKONOS MS data, respectively, as compared with conventional Bayesian classifier, demonstrating the robustness of the approach.

REFERENCES

