Insights to Urban Dynamics through Landscape Spatial Pattern Analysis
Ramachandra T V a,b,c,*                Bharath H. Aithal a,b                Durgappa D. Sanna b
a Energy & Wetlands Research Group, Center for Ecological Sciences [CES], b Centre for Sustainable Technologies (astra), c Centre for infrastructure, Sustainable Transportation and Urban Planning [CiSTUP], Indian Institute of Science, Bangalore, Karnataka, 560 012, India
*Corresponding author:


Urbanisation is a dynamic complex phenomenon involving large scale changes in the land uses at local levels. Analyses of changes in land uses in urban environments provide a historical perspective of land use and give an opportunity to assess the spatial patterns, correlation, trends, rate and impacts of the change, which would help in better regional planning and good governance of the region. Main objective of this research is to quantify the urban dynamics using temporal remote sensing data with the help of well-established landscape metrics. Bangalore being one of the rapidly urbanizing landscapes in India has been chosen for this investigation. Complex process of urban sprawl was modelled using spatio temporal analysis. Land use analyses show 584% growth in built-up area during the last four decades with the decline of vegetation by 66% and water bodies by 74%. Analyses of the temporal data reveals an increase in urban built up area of 342.83% (during 1973 to 1992), 129.56% (during 1992 to 1999), 106.7% (1999 to 2002), 114.51% (2002 to 2006) and 126.19% from 2006 to 2010. The Study area was divided into four zones and each zone is further divided into 17 concentric circles of 1 km incrementing radius to understand the patterns and extent of the urbansiation at local levels. The urban density gradient illustrates radial pattern of urbanization for the period 1973 to 2010. Bangalore grew radially from 1973 to 2010 indicating that the urbanization is intensifying from the central core and has reached the periphery of the Greater Bangalore.  Shannon’s entropy, alpha and beta population densities were computed to understand the level of urbanization at local levels. Shannon's entropy  values of recent time confirms dispersed haphazard  urban  growth  in the city, particularly  in the outskirts of  the city.  This also illustrates the extent of influence of drivers of urbanization in various directions.  Landscape metrics provided in depth knowledge about the sprawl. Principal component analysis helped in prioritizing the metrics for detailed analyses. The results clearly indicates  that whole  landscape is aggregating to a large patch in 2010 as compared to earlier years which was dominated by several small patches. The large scale conversion of small patches to large single patch can be seen from 2006 to 2010. In the year 2010 patches are maximally aggregated indicating that the city is becoming more compact and more urbanised  in recent years. Bangalore was the most sought after destination for its climatic condition and the availability of various facilities (land availability, economy, political factors) compared to other cities. The growth into a single urban patch can be attributed to rapid urbanisation coupled with the industrialisation. Monitoring of growth through landscape metrics helps to maintain and manage the natural resources.

Keywords: Urbanisation, urban sprawl, landscape metrics, spatial metrics, remote sensing

Citation : Ramachandra. T.V., Bharath H. Aithal and Durgappa D. Sanna, 2012. Insights to Urban Dynamics through Landscape Spatial Pattern Analysis., International Journal of Applied Earth Observation and Geoinformation, Vol. 18, Pp. 329-343.
* Corresponding Author :
  Dr. T.V. Ramachandra
Energy & Wetlands Research Group, Centre for Ecological Sciences, Indian Institute of Science, Bangalore – 560 012, India.
Tel : 91-80-23600985 / 22932506 / 22933099,      Fax : 91-80-23601428 / 23600085 / 23600683 [CES-TVR]
E-mail :,,     Web :
E-mail    |    Sahyadri    |    ENVIS    |    GRASS    |    Energy    |    CES    |    CST    |    CiSTUP    |    IISc    |    E-mail